Prevalence and pathogen load estimates for the fungus Batrachochytrium dendrobatidis are impacted by ITS DNA copy number variation.
نویسندگان
چکیده
The ribosomal gene complex is a multi-copy region that is widely used for phylogenetic analyses of organisms from all 3 domains of life. In fungi, the copy number of the internal transcribed spacer (ITS) is used to detect abundance of pathogens causing diseases such as chytridiomycosis in amphibians and white nose syndrome in bats. Chytridiomycosis is caused by the fungi Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal), and is responsible for declines and extinctions of amphibians worldwide. Over a decade ago, a qPCR assay was developed to determine Bd prevalence and pathogen load. Here, we demonstrate the effect that ITS copy number variation in Bd strains can have on the estimation of prevalence and pathogen load. We used data sets from different amphibian species to simulate how ITS copy number affects prevalence and pathogen load. In addition, we tested 2 methods (gBlocks® synthetic standards and digital PCR) to determine ITS copy number in Bd strains. Our results show that assumptions about the ITS copy number can lead to under- or overestimation of Bd prevalence and pathogen load. The use of synthetic standards replicated previously published estimates of ITS copy number, whereas dPCR resulted in estimates that were consistently lower than previously published estimates. Standardizing methods will assist with comparison across studies and produce reliable estimates of prevalence and pathogen load in the wild, while using the same Bd strain for exposure experiments and zoospore standards in qPCR remains the best method for estimating parameters used in epidemiological studies.
منابع مشابه
ITS1 Copy Number Varies among Batrachochytrium dendrobatidis Strains: Implications for qPCR Estimates of Infection Intensity from Field-Collected Amphibian Skin Swabs
Genomic studies of the amphibian-killing fungus (Batrachochytrium dendrobatidis, [Bd]) identified three highly divergent genetic lineages, only one of which has a global distribution. Bd strains within these linages show variable genomic content due to differential loss of heterozygosity and recombination. The current quantitative polymerase chain reaction (qPCR) protocol to detect the fungus f...
متن کاملCryptic chytridiomycosis linked to climate and genetic variation in amphibian populations of the southeastern United States
North American amphibians have recently been impacted by two major emerging pathogens, the fungus Batrachochytrium dendrobatidis (Bd) and iridoviruses in the genus Ranavirus (Rv). Environmental factors and host genetics may play important roles in disease dynamics, but few studies incorporate both of these components into their analyses. Here, we investigated the role of environmental and genet...
متن کاملBatrachochytrium dendrobatidis infection dynamics vary seasonally in upstate New York, USA.
The amphibian disease chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), is a major cause of worldwide amphibian declines and extinctions. Although several studies indicate that Bd prevalence and infection intensity vary seasonally, temporal variation of Bd at high-latitude sites, such as the northeastern USA, is still poorly characterized. We screened amphibians for Bd...
متن کاملInteractions between Batrachochytrium dendrobatidis and its amphibian hosts: a review of pathogenesis and immunity.
The fungus Batrachochytrium dendrobatidis (Bd) causes a lethal skin disease of amphibians, chytridiomycosis, which has caused catastrophic amphibian die-offs around the world. This review provides a summary of host characteristics, pathogen characteristics and host-pathogen responses to infection that are important for understanding disease development.
متن کاملGenomic Correlates of Virulence Attenuation in the Deadly Amphibian Chytrid Fungus, Batrachochytrium dendrobatidis
Emerging infectious diseasespose a significant threat to global health, but predicting disease outcomes for particular species can be complicated when pathogen virulence varies across space, time, or hosts. The pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd) has caused worldwide declines in frog populations. Not only do Bd isolates from wild populations vary in virulence, but viru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Diseases of aquatic organisms
دوره 123 3 شماره
صفحات -
تاریخ انتشار 2017